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Abstract – This paper presents WiSee, a novel gesture
recognition system that leverages wireless signals (e.g., Wi-
Fi) to enable whole-home sensing and recognition of human
gestures. Since wireless signals do not require line-of-sight
and can traverse through walls, WiSee can enable whole-
home gesture recognition using few wireless sources. Further,
it achieves this goal without requiring instrumentation of the
human body with sensing devices. We implement a proof-of-
concept prototype of WiSee using USRP-N210s and evaluate
it in both an office environment and a two-bedroom apart-
ment. Our results show that WiSee can identify and classify
a set of nine gestures with an average accuracy of 94%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless
Communication
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1. Introduction

As computing moves increasingly away from the desktop,
there is a growing need for new ways to interact with com-
puter interfaces. The Xbox Kinect is an example of a com-
mercially available input sensor that enables gesture-based
interaction using depth sensing and computer vision. The
commercial success of these kinds of devices has spurred
interest in developing new user interfaces that remove the
need for a traditional keyboard and mouse. Gestures enable
a whole new set of interaction techniques for always-available
computing embedded in the environment. For example, us-
ing a swipe hand motion in-air, a user could control the music
volume while showering, or change the song playing on a mu-
sic system installed in the living room while cooking, or turn
up the thermostat while in bed. Such a capability can enable
applications in diverse domains including home-automation,
elderly health care, and gaming. However, the burden of in-
stallation and cost make most vision-based sensing devices
hard to deploy at scale, for example, throughout an entire
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home or building. Given these limitations, researchers have
explored ways to move some of the sensing onto the body and
reduce the need for environmental sensors [8, 14, 13]. How-
ever, even on-body approaches are limited to what people
are willing to constantly carry or wear, and may be infeasi-
ble in many scenarios (e.g., in a shower).

This paper presents WiSee, the first whole-home gesture
recognition system that requires neither user instrumenta-
tion nor an infrastructure of cameras. WiSee achieves this
by leveraging wireless signals (e.g. Wi-Fi) in an environ-
ment. Since these signals do not require line-of-sight and
can traverse through walls, very few signal sources need to
be present in the space (e.g., a Wi-Fi AP and a few mo-
bile devices in the living room). WiSee works by looking at
the minute Doppler shifts and multi-path distortions that
occur with these wireless signals from human motion in the
environment.

To this end, we address the following two challenges:

(a) How do we capture information about gestures from
wireless signals? WiSee leverages the property of Doppler
shift [12, 3], which is the frequency change of a wave as its
source moves relative to the observer. The canonical example
is the change in the pitch of a train’s whistle as it approaches
and departs from a listener. In the context of wireless sig-
nals, if we consider the multi-path reflections from the hu-
man body as waves from a source, then a human performing
a gesture, results in a pattern of Doppler shifts at the wire-
less receiver. Thus, a user moving her hand away from the
receiver results in a negative Doppler shift, while moving the
hand towards the receiver results in a positive Doppler shift.

The challenge, however, is that human hand gestures re-
sult in very small Doppler shifts that can be hard to detect
from typical wireless transmissions (e.g., Wi-Fi). Specifically,
since wireless signals are electromagnetic waves that prop-
agate at the speed of light (c m/sec), a human moving at
a speed of v m/sec, results in a maximum Doppler shift of
2f
c

v , where f is the frequency of the wireless transmission [3].
Thus, a 0.5 m/sec gesture results in a 17 Hz Doppler shift
on a 5 GHz Wi-Fi transmission. Typical wireless transmis-
sions have orders of magnitude higher bandwidth (20 MHz
for Wi-Fi). Thus, for gesture recognition, we need to detect
Doppler shifts of a few Hertz from the 20 MHz Wi-Fi signal.

At a high level, WiSee addresses this problem by trans-
forming the received signal into a narrowband pulse with a
bandwidth of a few Hertz. The WiSee receiver (which can
be implemented on a Wi-Fi AP) then tracks the frequency
of this narrowband pulse to detect the small Doppler shifts
resulting from human gestures. In §3, we describe our algo-



rithm in more detail and show how to make it applicable to
existing 802.11 frames.

(b) How can we deal with other humans in the environment?
A typical home may have multiple people who can affect
the wireless signals at the same time. WiSee uses the MIMO
capability that is inherent to 802.11n, to focus on gestures
from a particular user. MIMO provides throughput gains by
enabling multiple transmitters to concurrently send packets
to a MIMO receiver. If we consider the wireless reflections
from each human as signals from a wireless transmitter, then
they can be separated using a MIMO receiver.

Traditional MIMO decoding, however, relies on estimating
the channel between the transmitter and receiver antennas.
These channels are typically estimated by sending a distinct
known preamble from each transmitter. Such a known signal
structure is not available in our system since the human body
reflects the same 802.11 transmitter’s signals.

Our solution to this problem is inspired by the trigger
approach taken by many multi-user games that use Xbox
Kinect, in which a user gains control of the interface by
performing a specific gesture pattern. In WiSee the target
human performs a repetitive gesture, which we use as that
person’s preamble. A WiSee receiver leverages this preamble
to estimate the MIMO channel that maximizes the energy
of the reflections from the user. Once the receiver locks on
to this channel, the user performs normal (non-repetitive)
gestures that the receiver classifies using the Doppler shifts.
In §3.3, we explore this idea further and show how to ex-
tract the preamble without requiring the human to perform
gestures at a pre-determined speed.

The WiSee proof-of-concept is implemented in GNURadio
using the USRP-N210 hardware. We classify the gestures
from the Doppler shifts using a simple pattern-matching
algorithm described in §3.2. We evaluated WiSee with a
total of five users in both an office environment and a
two-bedroom apartment whose layout is shown in Fig. 7.
We performed gestures in a number of scenarios including
line-of-sight, non-line-of-sight, and through-the-wall scenar-
ios where the person is in a different room from the wireless
transmitter and the receiver. The users perform a total of
900 gestures across the locations.

Our findings are as follows:

• WiSee can classify the nine whole-body gestures shown in
Fig. 1, with an average accuracy of 94%. This is promising,
given that the accuracy for random guesses is 11.1%.

• Using a 4-antenna receiver and a single-antenna trans-
mitter placed in the living room, WiSee can achieve the
above classification accuracy in 60% of the home loca-
tions. Adding an additional single-antenna transmitter to
the living room achieves the above accuracy in locations
across all the rooms. Thus, with a WiSee-enabled Wi-Fi
AP acting as a receiver and a couple of mobile devices act-
ing as transmitters, WiSee can enable whole-home gesture
recognition.

• Over a 24-hour period, WiSee’s average false positive
rate—events that detect a gesture in the absence of the
target human—is 2.63 events per hour when using a
preamble with two gesture repetitions. This goes down
to 0.07 events per hour, when the number of repetitions is
increased to four.

• Using a 5-antenna receiver and a single-antenna transmit-
ter, WiSee can successfully perform gesture classification,
in the presence of three other users performing random

Figure 1—Gesture sketches: WiSee can detect and clas-
sify these nine gestures in line-of-sight, non-line-of-sight, and
through-the-wall scenarios with an average accuracy of 94%.

gestures. However, the classification accuracy reduces as
we further increase the number of interfering users. This
is a limitation of WiSee: Given a fixed number of trans-
mitters and receiver antennas, the accuracy reduces with
the number of users. However, since typical home scenar-
ios do not have a large number of users in a single room,
WiSee can enable a large set of interaction applications
for always-available computing in home environments.

Contributions: We make the following contributions:

• We introduce the first wireless system that enables gesture
recognition in line-of-sight, non-line-of-sight, and through-
the-wall scenarios.

• We present algorithms to extract gesture information
from communication-based wireless signals. Specifically,
we show how to extract minute Doppler shifts from wide-
band OFDM transmissions that are typical to most mod-
ern communication systems including Wi-Fi.

• Finally, using a proof-of-concept prototype, we demon-
strate that our system can detect a set of nine whole-body
gestures in typical environments.

This paper takes the first step towards leveraging existing
wireless networks to enable novel human-computer interac-
tion mechanisms such as whole-home gesture recognition.
We hope that this line of work would open up a number
of research opportunities at the intersection of wireless net-
working and HCI, and bridge the two communities.

2. Related Work

Our work is related to prior art in both wireless systems
and in-air gesture recognition systems.

(a) Wireless Systems: One can classify the related work
in this domain into three main categories: wireless localiza-
tion, wireless tomography, and through-the-wall radar sys-



tems. Prior work on localization use a variety of techniques
to localize wireless devices, including, RSSI [6], fine-grained
OFDM channel information [21], and multiple antennas [26].
There has also been recent interest in device-free localization
of humans [28, 20] using the RSSI information from wire-
less devices. WiSee builds on this foundational work but is
complementary to it in that it focuses on achieving human
gesture recognition using wireless signals.

WiSee is also related to work on wireless tomography that
aims to localize humans by deploying a network of sensors
throughout the environment [29, 25, 24]. These systems typ-
ically use the RSSI value observed at each sensor to localize
humans. WiSee builds on this work but significantly differs
from it in that it extracts Doppler shifts from wireless signals
to perform human gesture recognition. Further, we demon-
strate that one can perform whole-home gesture recognition
without requiring wireless devices in every room.

Finally, WiSee is related to work on through-the-wall
radar systems [4, 18, 3] that can identify objects such as
metal pins behind a wall. These systems use expensive ultra-
wideband transceivers that use bandwidths on the order of
1 GHz [4]. In contrast, WiSee focuses on gesture recognition
and shows how to extract gesture information from wireless
transmissions. The closest to our work in this domain is re-
cent work [5] that demonstrates the feasibility of using Wi-Fi
signals to detect running in through-the-wall scenarios. How-
ever, to the best of our knowledge, none of the prior radar
systems have been designed to work for gesture recognition.
In contrast, WiSee introduces mechanisms that enable it to
go beyond coarse human motion such as running and walk-
ing, and delivers the first wireless system that can identify
finer-grained human motion such as gestures in LOS, NLOS,
and through-the-wall scenarios.

(b) In-Air Gesture Recognition Systems: The com-
mercial success of products like the Xbox Kinect has popu-
larized the use of gestures to control computer systems [22].
Increasingly, in-air gesture recognition is being incorporated
into consumer electronics and mobile devices, including lap-
tops [2], smartphones [9, 12], and GPS devices [19]. The
related work in this domain use four main techniques: com-
puter vision, ultra-sonic, electric field, and inertial sensing.

Vision-based systems extract gesture information using
advances in the hybrid camera technology like pixel-mixed
devices (PMDs) [22]. Likewise, ultra-sonic systems leverage
Doppler shifts on sound waves to perform gesture recogni-
tion [12]. Both these systems, however, require a line-of-sight
channel between the sensing device and the human. In con-
trast, WiSee leverages wireless signals that can operate in
non-line-of-sight scenarios and can go through wooden walls
and obstacles like curtains and furniture.

Electric Field sensing systems like Magic Carpet [17] in-
strument the floor with multiple sensors to perform human
localization and gesture recognition. However, this imposes
heavy instrumentation of the environment and is not practi-
cal. Inertial sensing and other on-body sensing methods on
the other hand, require the users to wear multiple sensors
or carry a device such as a wristband [8, 14, 13]. While at-
tractive, in many instances, such an approach can be incon-
venient (for instance, while showering). In contrast, WiSee
enables whole-home gesture recognition without the need to
instrument the human body.

Finally, prior work has leveraged Doppler shifts to per-
form gesture recognition in line-of-sight scenarios [12, 15].

In this paper, we present algorithms that allow us to extract
Doppler shifts in line-of-sight, non-line-of-sight and through-
the-wall scenarios; thus enabling gesture recognition without
the need for sensing devices in every room. Further, we in-
troduce algorithms to extract minute Doppler shifts from
wide-band OFDM signals that are typically used in commu-
nication technologies including Wi-Fi.

3. WiSee

WiSee is a wireless system that enables whole-home ges-
ture recognition. Since wireless signals can typically propa-
gate through walls, and do not require a line of sight chan-
nel, WiSee can enable gesture recognition independent of the
user’s location. To achieve this, we need to answer three main
questions: First, how does WiSee extract Doppler shifts from
conventional wireless signals like Wi-Fi? Second, how does
it map the Doppler shifts to the gestures performed by the
user? Third, how does it enable gesture recognition in the
presence of other humans in the environment? In the rest of
this section, we address each of these questions.

3.1 Extracting Doppler shifts from Wireless

Signals

Doppler shift is the change in the observed frequency
as the transmitter and the receiver move relative to each
other. In our context, an object reflecting the signals from
the transmitter can be thought of as a virtual transmitter
that generates the reflected signals. Now, as the object (vir-
tual transmitter) moves towards the receiver, the crests and
troughs of the reflected signals arrive at the receiver at a
faster rate. Similarly, as an object moves away from the re-
ceiver, the crests and troughs arrive at a slower rate. More
generally, a point object moving at a speed of v at an angle
of θ from the receiver, results in a Doppler shift [3] given by:

∆f ∝
2vcos(θ)

c
f (1)

where c is the speed of light in the medium and f is the
transmitter’s center frequency. We note the following:

• The observed Doppler shift depends on the direction of
motion with respect to the receiver. For instance, a point
object moving orthogonal to the direction of the receiver
results in no Doppler shift, while a point object moving
towards the receiver maximizes the Doppler shift. Since
human gestures typically involve multiple point objects
moving along different directions, the set of Doppler shifts
seen by a receiver can, in principle, be used to classify
different gestures.

• Higher transmission frequencies result in a higher Doppler
shift for the same motion. Thus, a Wi-Fi transmission
at 5 GHz results in twice the Doppler shift as a Wi-Fi
transmission at 2.5 GHz. We note, however, that much
higher frequencies (e.g., at 60 GHz) may not be suitable
for whole-home gesture recognition since they are more
directional and typically not suitable for NLOS scenarios.

• Faster speeds result in larger Doppler shifts, while slower
speeds result in smaller Doppler shifts. Thus, it is easier
to detect a human running towards the receiver than to
detect a human walking slowly. Further, gestures involving
full-body motion (e.g. walking towards or away from the
receiver) are easier to capture than gestures involving only
parts of the body (e.g., hand motion towards or away from
the receiver). This is because a full-body motion involves



many more point object moving at the same time. Thus,
it creates Doppler signals with much larger energy than
when the human uses only parts of her body.

Challenge: Human motion results in a very small Doppler
shift that can be hard to detect from a typical wireless
transmission (e.g., Wi-Fi, WiMax, LTE, etc.). For instance,
consider a user moving her hand towards the receiver at
0.5 m/sec. From Eq. 1, this results in a Doppler shift of
about 17 Hertz for a Wi-Fi signal transmitted at 5 GHz
(θ = 0). Since the bandwidth of Wi-Fi’s transmissions is at
least 20 MHz, the resulting Doppler shift is orders of magni-
tude smaller than Wi-Fi’s bandwidth. Identifying such small
Doppler shifts from these transmissions can be challenging.

Our Solution: WiSee presents a receiver design that can
identify Doppler shifts at the resolution of a few Hertz from
Wi-Fi signals. The basic idea underlying WiSee is to trans-
form the received Wi-Fi signal into a narrowband pulse with
the bandwidth of a few Hertz. The receiver then tracks
the frequency of this narrowband pulse to detect the small
Doppler shifts.

WiSee is designed for OFDM-based systems – OFDM
is the modulation of choice for most modern wireless sys-
tems including 802.11 a/g/n, WiMAX, and LTE. OFDM
divides the used RF bandwidth into multiple sub-channels
and modulates data in each sub-channel. For instance, Wi-Fi
typically divides the 20 MHz channel into 64 sub-channels
each with a bandwidth of 312.5 KHz. The time-domain
OFDM symbol is generated at the transmitter by taking
an FFT over a sequence of modulated bits transmitted in
each OFDM sub-channel. Specifically, the transmitter takes
blocks of N modulated bits (N = 64 in 802.11), and applies
an N -point Inverse Fast Fourier Transform (IFFT),

xk =
N

X

n=1

Xne i2πkn/N

where Xn is the modulated bit sent in the nth OFDM
sub-channel. Each block of x1, · · ·xN forms a time-domain
OFDM symbol that the receiver decodes by performing the
FFT operation, i.e.,

Xn =

N
X

k=1

xke
−i2πkn/N (2)

To demonstrate how WiSee’s receiver works on these
OFDM signals, we first consider the scenario where the
transmitter repeatedly sends the same OFDM symbol. We
then generalize our approach to arbitrary OFDM symbols,
making the scheme applicable to existing 802.11 frames.

Case 1: Transmitter sends the same OFDM symbol.
In this case, instead of performing an FFT over each OFDM
symbol, WiSee’s receiver performs a large FFT over M con-
secutive OFDM symbols. As a consequence of this operation,
the bandwidth of each OFDM sub-channel is reduced by a
factor of M . To see this, say the receiver performs a 2N -
point FFT over two consecutive, identical OFDM symbols.
The output of the FFT can be written as,1

Xn =
N

X

k=1

xke
−i2πkn/2N +

2N
X

k=N+1

xke
−i2πkn/2N

1For simplicity, we ignore the noise term in the above equa-
tion. However, as with standard OFDM decoding, these lin-
ear equations hold even in the presence of noise.
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Figure 2—Creating a narrowband signal using
WiSee: The first subplot shows the output of an FFT taken
over an OFDM symbol. The second subplot shows the out-
put of an FFT taken over two identical OFDM symbols.
They show that taking a larger FFT over identical OFDM
symbols, reduces each subchannel’s bandwidth.

Since the first N transmitted samples are identical to the
last N samples, i.e., xk = xk+N , for k = 1 to N , we can
re-write the above equation as,

Xn =
N

X

k=1

xke
−i2πkn/2N +

N
X

k=1

xke
−i2π(k+N)n/2N

After simplification, we get:

Xn =
N

X

k=1

xke
−i2πkn/2N (1 + e−iπn )

Now, when n is an even number, (1+e−iπn) = 2, but when n
is an odd number, (1+e−iπn ) = 0. Thus, the above equation
can be re-written as,

X2l = 2

N
X

k=1

xke
−i2πkl/N , X2l+1 = 0

Thus, as shown in Fig. 2, the odd sub-channels are zero and
the even sub-channels capture the output (Eq. 2) of an N -
point FFT on a single OFDM symbol. Intuitively, this hap-
pens because in each sub-channel, the same modulated in-
formation is transmitted in both the OFDM symbols. Thus,
the bandwidth used by each sub-channel effectively halves.
More generally, when the receiver performs an MN -point
FFT over an OFDM symbol that is repeated M times, the
bandwidth of each sub-channel is reduced by a factor of M .
Thus, WiSee can create multiple narrowband signals cen-
tered at each sub-channel by repeating an OFDM symbol
and performing a large FFT operation.

Now, by performing a large FFT over an one-second du-
ration, the WiSee receiver can create a one-Hertz wide nar-
rowband signal. The WiSee receiver tracks this narrowband
signal to capture the Doppler shift (see §3.2). Note that one
can average the Doppler shifts observed across all the OFDM
sub-channels to significantly reduce the noise in the Doppler
measurements.

Case 2: Transmitter sends arbitrary OFDM sym-
bols. Our description so far assumes that the transmitter
repeatedly sends the same OFDM symbol. Typical 802.11
transmitters however send different data across symbols. We
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Figure 3—Dealing with Residual Frequency offset:
The figure plots the frequency profile of the narrowband sig-
nal centered at one of the subchannels. It shows the profile
in the presence of a gesture, both with and without residual
offsets. WiSee accounts for the residual offset by tracking the
peak with the maximum energy (the other peaks correspond
to Doppler shifts).

show how to extract Doppler shifts from such transmissions.
At a high level, WiSee achieves this by designing a data-
equalizing re-encoder at the receiver that transforms each
received OFDM symbol into the same symbol. To do this,
the receiver first decodes the symbols using the standard
802.11 decoder. Specifically, the receiver performs an FFT
on each time-domain OFDM symbol and transforms it into
the frequency-domain. The receiver, then, decodes the mod-
ulated bits in each sub-channel, passes the modulated bits
through the demodulator and the convolutional/Viterbi de-
coder to get the transmitted bits.2

Now that the WiSee receiver knows the modulated bits,
it transforms every received symbol into the first OFDM
symbol. Say Xi

n denotes the modulated bit in the nth sub-
channel of the i th OFDM symbol. The WiSee receiver equal-
izes the i th OFDM symbol with the first symbol. In partic-
ular, it multiplies the nth frequency sub-channel in the i th

symbol with
X

1

n

Xi
n
.

Now that all the received symbols are data-equalized to
the first symbol, the receiver performs an IFFT on each
of these equalized symbols to get the corresponding time-
domain samples. Since these data-equalization operations
only modify the data in each sub-channel, it does not change
either the wireless channel or the Doppler shift information.
Now, the receiver effectively has repeated OFDM symbols
and we are back to Case 1.

We note that human gestures change the phase and ampli-
tude of the received symbols. A traditional decoder accounts
for these changes by using the pilot bits that are present
in every OFDM symbol. In particular, the receiver decodes
by removing these phase and amplitude changes that en-
code the gesture information. To avoid this, during the re-
encoding phase before computing the IFFT, the WiSee re-
ceiver re-introduces the phase and amplitude changes that
were removed by the decoder. This ensures that the gesture
information is not lost in decoding.

3.1.1 Practical Issues

We answer the following questions:

(a) How does WiSee deal with frequency offsets? A frequency
offset between the transmitter and the receiver creates a
shift in the center frequency, which can be confused for a
Doppler shift. To address this issue, a WiSee receiver takes
a two-pronged approach. First, it leverages prior work [23,

2For the reasons described in §3.1.1, discarding occasional
erroneous packets does not significantly affect Doppler shift
computation.
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Figure 4—Classification accuracy versus transmitter
occupancy: The accuracy of distinguishing between two
gestures is high even when the transmitter transmits only
3% of the time.

16] to get a coarse estimate of the frequency offset using
the preamble at the beginning of the transmission; it com-
pensates the estimated frequency offset in the rest of the
transmission. Second, to account for any residual frequency
offset, WiSee leverages the fact that in the absence of resid-
ual offsets, the energy in the DC frequency (center frequency
of each OFDM sub-channel) corresponds to the paths from
the transmitter to the receiver that do not involve the hu-
man. This shows up as the large peak in Fig. 3 (dotted line).
However, with residual offsets, both the DC and the Doppler
frequencies are shifted by the same amount (the solid line in
the figure). Since the DC energy (i.e., the energy from the
transmitter to the receiver minus the human reflections) is
typically much higher than the Doppler energy (reflections
from the human), the WiSee receiver tracks the frequency
corresponding to the maximum energy and corrects for the
residual frequency offset.

(b) Does the transmitter have to continuously transmit on
the wireless medium? So far, we assume that the transmit-
ter transmits continuously and the receiver uses the signal
to compute the Doppler shifts. This is, however, not fea-
sible since 802.11 packets are typically less than a few mil-
liseconds. Further, while transmitting continuously might be
feasible in an un-utilized network, it can significantly affect
the throughput of other devices in a busy network. WiSee
instead performs the following procedure: it linearly inter-
polates the received OFDM symbols to fill the time slots
where no transmission happens. The interpolation is done
per sub-channel after the OFDM symbols are transformed
into the frequency domain. After interpolation, the receiver
transforms all OFDM symbols, both original and interpo-
lated, back to the time domain and forms a synthesized
time-continuous trace. The underlying assumption here is
that during the short time-period between two transmis-
sions, the user’s motion does not dis-continuously change the
wireless channel. To see the effects of this interpolation, we
perform an experiment where the user performs two simple
gestures—either move her arm towards the receiver or away
from the receiver. The user is ten feet away from the re-
ceiver. We apply our gesture classification algorithm, which
we describe in the next section. Fig. 4 shows the results with
the transmissions evenly spread out in time. The plot shows
that the classification accuracy is high even when the trans-
mission occupancy is as low as 3%.

(c) What about the cyclic prefix? The above discussion as-
sumes that the transmitter sends the OFDM symbols back-
to-back. However, an 802.11 transmitter sends a cyclic prefix
(CP) between every two OFDM symbols to prevent inter-
symbol interference. The CP is created by taking the last
k samples from each OFDM symbol. We consider the CP
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Figure 5—Frequency-time Doppler profile of an ex-
ample gesture. The user moves her hand towards the re-
ceiver.

to be a specific kind of discontinuity between the OFDM
symbols. Thus, we can perform interpolation between the
OFDM symbols as described earlier. We note, however, that
since all the CPs have a fixed length, such an interpolation is
equivalent to resampling the OFDM symbols at a constant
rate given by Symbol length+CP length

Symbol length
, where Symbol length and

CP length denote the length of the OFDM symbol and CP
respectively. Since such resampling of the symbols does not
change the doppler pattern, in practice we simply skip the
CPs to reduce the computation.

3.2 Mapping Doppler Shifts to Gestures

So far we described how to transform the wideband 802.11
transmissions into a narrowband signal at the receiver. In
this section, we show how to extract the Doppler informa-
tion and map it to the gestures. Specifically, we describe the
following three steps: (1) Doppler extraction which computes
the Doppler shifts from the narrowband signals, (2) Segmen-
tation which identifies a set of segments that correspond to
a gesture, and (3) Classification which determines the most
likely gesture amongst a set of gestures. We describe how
WiSee performs each of these steps. We focus on the sin-
gle user case; in §3.3, we extend our design to work in the
presence of other users.

(1) Doppler Extraction: WiSee extracts the Doppler in-
formation by computing the frequency-time Doppler profile
of the narrowband signal. To do this, the receiver computes
a sequence of FFTs taken over time. Specifically, it computes
an FFT over samples in the first half-a-second interval. Such
an FFT give a Doppler resolution of 2 Hertz. The receiver
then moves forward by a 5 ms interval and computes an-
other FFT over the next overlapping half-a-second interval.
It repeats this process to get a frequency-time profile.

Fig. 5 plots the frequency-time Doppler profile (in dB) of
a user moving her hand towards the receiver. The plot shows
that, at the beginning of the gesture most of the energy is
concentrated in the DC (zero) frequency. This corresponds to
the signal energy between the transmitter and the receiver,
on paths that do not include the human. However, as the
user starts moving her hand towards the receiver, we first
see increasing positive Doppler frequencies (corresponding
to hand acceleration) and then decreasing positive Doppler
frequencies (corresponding to hand deceleration).

We note that the WiSee receiver is only interested in the
Doppler shifts produced by human gestures. Since the speeds
at which a human can typically perform gestures are between
0.25 m/sec and 4 m/sec [12], the Doppler shift of interest at
5 GHz is between 8 Hz and 134 Hz. Thus, the WiSee receiver
reduces its computational complexity by analyzing the FFT
output corresponding to only these frequencies.

(2) Segmentation: To do this, WiSee leverages the struc-
ture of the Doppler profiles, shown in Fig. 6. These corre-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 6—Frequency-time Doppler profiles of the
gestures in Fig. 1. WiSee segments the profiles into
sequences of positive and negative Doppler shifts, which
uniquely identify each gesture.

spond to the gestures in Fig 1. The plots show that the
profiles are a combination of positive and negative Doppler
shifts. Further, each gesture comprises of a set of segments
that have positive and negative Doppler shifts. For example,
the profile in Fig. 6(a) has just one segment with positive
Doppler shift. However, Fig. 6(b) has two segments each of
which has a positive and a negative Doppler shift. Further,
within each segment, the Doppler energy first increases and
then decreases (which correspond to acceleration and decel-
eration of human body parts).

A WiSee receiver leverages these properties to first find
segments and then cluster segments into a gesture. Our pro-
cess of finding segments is intuitively similar to packet detec-
tion in wireless communication systems. In communication,
to detect the beginning of a packet, the receiver computes
the average received energy over a small duration. If the ratio
between this energy and noise level is greater than a thresh-
old, then the receiver detects the beginning of a packet. Sim-
ilarly, if this ratio falls below a threshold, the receiver detects
the end of the packet. Likewise, in our system, the energy
in each segment first increases and then decreases. So the
WiSee receiver computes the average energy in the positive
and negative Doppler frequencies (other than the DC and
the four frequency bins around it). If the ratio between this
average energy and the noise level is greater than 3 dB, the
receiver detects the beginning of a segment. When this ratio
falls below 3 dB, the receiver detects the end of the segment.3

To cluster segments into a single gesture, WiSee’s receiver
uses a simple algorithm: if two segments are separated by
less than one second, we cluster them into a single gesture.

(3) Gestures Classification: As described earlier, the
Doppler profiles in Fig. 6 can be considered as a sequence
of positive and negative Doppler shifts. Further, from the
plots, we see that the patterns are unique and different across
the nine gestures. Thus, the receiver can classify gestures
by matching the pattern of positive and negative Doppler
shifts. Specifically, there are three types of segments: seg-
ments with only positive Doppler shifts, segments with only

3The noise level is calibrated at the receiver by computing
the energy in the non-DC frequencies, in the absence of ges-
tures.



negative Doppler shifts, and segments with both positive
and negative Doppler shifts. These can be represented as
three numbers, ‘1’, ‘-1’, and ‘2’. Each gesture in Fig. 6 can
now be written as a unique sequence of these three numbers.
Now, gesture classification can be performed by comparing
and matching the received number sequence with the set
of pre-determined sequences. We note that our classification
algorithm works with different users performing gestures at
different speeds. This is because, different speeds only change
the duration of each segment and the specific Doppler fre-
quencies that have energy, but do not change the pattern of
positive and negative shifts. Thus, the gestures performed at
different speeds result in the same pattern of numbers and
hence can be classified.

We briefly comment on the selection of the gestures in
Fig. 1. In this paper, we picked gestures that can be encoded
by a sequence of positive and negative Doppler shifts. As
shown in Fig. 1, this covers a variety of interesting gesture
patterns. In principle, one can imagine extending WiSee to
more general gesture patterns by modeling the human body
motion and leveraging additional features from the signal;
this, however, is not in the scope of this paper.

We note that it is unlikely that random gestures such as
eating, stretching, etc. would be confused with the specific
gestures used to control devices. This is because, as we de-
scribe in the next section, a user gains control of the system
by performing a special, hard-to-confuse gesture sequence
that acts as a preamble. We also note that one can leverage
techniques like Hidden Markov Models (HMMs) and Dy-
namic Time Warping (DTW) to increase the gesture space.
Exploring these algorithms however is not in the scope of
this paper.

3.3 Multiple Humans

WiSee leverages MIMO to improve the accuracy and ro-
bustness of the system, and to enable it to work in the pres-
ence of multiple humans. However, as described in §1, MIMO
decoding requires a known preamble to compute the MIMO
channel of the target user. WiSee uses a repetitive gesture as
a preamble. Specifically, the user pushes her hand towards
and away from the receiver, and repeats this gesture to form
the preamble. This creates a sequence of alternating positive
(+1) and negative (-1) Doppler shifts, i.e., an alternating se-
quence of +1 and -1 symbols. The WiSee receiver uses this
sequence to correlate and detect the presence of a target hu-
man. Note that, similar to communication systems [11], this
correlation works even in the presence of interfering users,
since their motion is uncorrelated with the preamble’s al-
ternating sequence of positive and negative Doppler shifts.
Next, WiSee finds the MIMO channel that maximizes the
Doppler energy from the target user. At a high level, it runs
an iterative algorithm (similar to [10]) on each segment of
the preamble gesture to find the MIMO direction that max-
imizes the Doppler energy. It then averages the MIMO di-
rection across segments to improve the estimation accuracy.
Using this estimated MIMO direction, a WiSee receiver mit-
igates interference from other users and locks onto the target
user by projecting the received signal on the desired direc-
tion.4

4Prior AoA algorithms [27] typically require fine-grained cal-
ibration of the MIMO systems, including measuring the dis-
tance between antennas, and tracking phase offset. Our sys-
tem, however, avoids such calibration since we are not inter-

Specifically, say the WiSee receiver has N antennas and
the preamble gesture has M segments. Our objective is to
find complex weights, Wn , for each of the antennas, such
that the Doppler energy for each of the segments is maxi-
mized. Specifically, if Dm is the Doppler energy in the mth
segment, then we want to find the set of directions, Wn ,
n = 1, · · · ,N , that maximizes:

Dm =
N

X

n=1

WnDnm ,

for all n = 1, 2, 3...N , where Dnm is the Doppler energy
corresponding to the mth segment on the nth antenna.

WiSee applies gradient descent that iterates over the am-
plitudes and phases of all Wns to find a optimal set of
weights. Note that while the phases can span values between
0 and 2π, the dynamic range of amplitudes is primarily de-
termined by the antenna gains and the different receive gains
on the radios (in our implementation this range is 6 dB).

We note the following: Firstly, the iterative algorithm oc-
casionally gets stuck in local minima where the Doppler en-
ergy does not considerably increase with iterations. To mit-
igate this problem, we select multiple initial points that are
evenly spaced and repeat the algorithm starting from these
points. Secondly, since WiSee’s receiver uses up to five anten-
nas, the search space significantly increases with the number
of receive antennas. To minimize complexity, we run the it-
erative algorithm pair-wise on each antenna with respect to
the first antenna. Specifically, we run the iteration algorithm
to find the weights on the N-1 antennas independently where
the weights are computed with respect to the first antenna.

Finally, using the repetitive gesture in the preamble, the
receiver can improve the estimation accuracy by averaging
across gestures. WiSee further improves this accuracy by
tracking this channel as the user performs gestures. Specif-
ically, the WiSee receiver applies the iterative algorithm on
every gesture performed by the target user. This allows it to
adapts the MIMO direction as different users interfere with
the target user.5 Our results in §4.3 show that, in the pres-
ence of three other interfering users, WiSee can classify the
first two gestures in Fig. 1 with an average accuracy of 90%
using a 5-antenna receiver.

We note that WiSee not only enables a user to perform
gestures in presence of other humans, but also enables mul-
tiple users to concurrently interact with the system. Specif-
ically, the WiSee receiver can track the MIMO direction of
each user to classify the gestures from multiple users.

3.3.1 Further Discussion

We discuss how one may augment WiSee’s current design
to make it more robust and secure.

(1) Tracking a mobile target user: Our description and eval-
uation assume that the target user performs gestures from
a fixed location and that she performs the repetitive motion
(preamble) when she moves to a new location. However, in
principle, one can reduce the need for repeating the pat-
tern by tracking the user as she moves in the environment.

ested in the physical direction of the signal, but the MIMO
direction that maximizes the Doppler energy.
5As the interfering users change, the optimal MIMO direc-
tion that maximizes the Doppler energy also changes. By
applying the iterative algorithm on every gesture, WiSee can
track these changes.



Specifically, human motion (e.g., walking and running) cre-
ates significant Doppler shifts, which as explained in §3 have
a higher energy than human gestures. Thus, the receiver
can, in principle, track the MIMO channel as the target user
moves, reducing the need to perform the repetitive gesture
again.

(2) Providing security: One of the risks of using a whole-
home gesture recognition system is enabling an unauthorized
user outside the home to control the devices within. To ad-
dress this problem, one may use a secret pattern of gestures
as a secret key to get access to the system. Once the access is
granted, the receiver can track the authorized user and per-
form the required gestures. Evaluating the potential of such
an approach, however, is outside the scope of this paper.

3.4 Addressing Multi-path Effects

So far we assumed that the reflected signals from the hu-
man body arrive at the wireless receiver along a single direc-
tion. In practice, however, the reflections, like typical wire-
less signals, arrive at the receiver along multiple paths.

Extracting general Doppler profiles in the presence of
multi path is challenging. However, the use of only the pos-
itive and negative Doppler shifts for gesture classification
simplifies our problems. Specifically, we have to address two
main problems: First, due to multi-path, a user performing
a gesture in the direction of the receiver from an adjacent
room, can create both positive and negative Doppler shifts
at the receiver. Second, strong reflectors like metallic sur-
faces can flip the positive and negative Doppler shifts. For
example, the receiver can observe stronger negative Doppler
shifts from a user moving her hand towards the receiver, if
the user is standing close to a metallic surface behind her.

The iterative algorithm used by WiSee intrinsically ad-
dresses the first problem. Specifically, as shown in recent
work on Angle-of-Arrival (AoA) systems [27], multiple an-
tennas can be used to separate multi-paths by adjusting the
phase on each antenna. Since WiSee’s iteration algorithm
can adapt both the amplitude and the phase to maximize
either the positive or the negative Doppler energy, it auto-
matically finds a MIMO direction that can focus on multi
paths that result in similar Doppler shifts. We note however
that unlike AoA systems, computing Doppler shifts does
not require distinguishing between the multi-paths in the
system. Instead WiSee only needs to distinguish between
sets of paths that all create either a positive or a negative
Doppler shift. Thus, one can perform gesture recognition
using a lower number of antennas than is required in AoA
systems.

To address the flipping problem between positive and neg-
ative Doppler shifts, WiSee leverages the preamble. Specif-
ically, since the repetitive gesture in the preamble always
starts with the user moving her hand towards the receiver,
the receiver can calibrate the sign of the subsequent Doppler
shifts. Specifically, if it sees a negative Doppler shift when
it expects a positive shift, the receiver flips the sign of the
Doppler shift. This allows WiSee to perform gesture recog-
nition independent of the user location.

4. Evaluation

We implement a prototype of WiSee on the software radio
platform and evaluate it on the USRP-N210 hardware. Each
USRP is equipped with a XCVR2450 daughterboard, and
communicates on a 10 MHz channel at 5 GHz. Since USRP-

Figure 7—Floor plan of the two-bedroom apartment:
The WiSee receiver, Tx1, and Tx2 are placed in the living
room. The layout has 4 LOS, 4 NLOS, and 2 through-the-
wall scenarios.

N210 boards cannot support multiple daughterboards, we
built a MIMO receiver by combining multiple USRP-N210s
using an external clock [1]. In our evaluation, we use MIMO
receivers that have up to five antennas. We use single-
antenna USRP-N210s as transmitters.6

The transmitter and the receiver are not connected to the
same clock. We build on the UHD code base to continu-
ously transmit OFDM symbols over a 10 MHz wide channel.
The transmitter uses different 802.11 modulations (BPSK,
4QAM, 16QAM, and 64QAM) and coding rates. The trans-
mit power we use in our implementation is 10 mW which
is lower than the maximum power allowed by USRP-N210s
(and Wi-Fi devices). This is because USRP-N210s exhibit
significant non-linearities at higher transmit powers, which
limits the ability to decode OFDM signals. We note, how-
ever, that, with higher transmission powers, one can in prin-
ciple perform gesture recognition at larger distances.

We evaluate our prototype design in two environments:

• An office building. The UW CSE building has an exter-
nal structure that is primarily metal and concrete. We
run the experiments in offices that are separated by dou-
ble sheet-rock (plus insulation) walls with a thickness of
approximately 5.7 inches. The building has a number of
other Wi-Fi access points and devices operating in the
frequency of interest.

• A two-bedroom apartment. The layout of the apartment
is shown in Fig. 7. It consists of a living room connected
to the kitchen and dining area, and two bedrooms and
a bathroom. The walls are hollow and have a thickness
of 5.5 inches; the doors are made of wood and have a
thickness of 1.4 inches.

We run our experiments with a total of five users. In addition
to evaluating WiSee’s ability to achieve whole-home gesture
recognition, we extensively evaluate it in the six different
scenarios, shown in Fig. 8.

(a) LOS-txrxcloseby: Here a receiver and a transmitter are
placed next to each other in a room. The user performs ges-
tures in line-of-sight to the receiver.

(b) LOS-txrxwall: Here a receiver and a transmitter are
placed in adjacent rooms separated by a wall. The user per-
forms the gestures in the room with the transmitter.

6Our implementation does not use off-the-shelf Wi-Fi trans-
mitters since we don’t have a configuration that will al-
low current USRPs to reliably operate at a bandwidth of
20 MHz.



Figure 8—Scenario layouts.

(c) LOS-txrxfar: Here a receiver and a transmitter are placed
19.7 feet away from each other. The user performs gestures
in line-of-sight to the receiver.

(d) Through-the-Wall: Here a receiver and a transmitter are
placed next to each other close to a wall. The user performs
gestures in the room adjacent to the wall.

(e) Through-the-Corridor: Here a receiver and a transmitter
are placed in different rooms separated by a corridor. The
user performs the gestures in the corridor.

(f) Through-the-Room: Here a receiver and a transmitter
are placed in different rooms separated by a room. The user
performs the gestures in the middle room.

In scenarios (b), (c), (e), and (f) both the transmitter and
the receiver use omnidirectional antennas. However, in sce-
narios (a) and (d) where the transmitter and the receiver are
placed next to each other, to prevent the transmitter’s signal
from overwhelming the receiver’s hardware, the transmitter
uses a Ettus LP0965 directional antenna that is placed in a
direction orthogonal to the receive antennas. The receiver,
however, still uses omnidirectional antennas. In principle, we
can further reduce the transmitter’s interference in these two
scenarios by leveraging techniques like full-duplex [7] and in-
terference nulling [16]. However, this is not in the scope of
this paper.

In the rest of this section, we first evaluate the feasibility of
gesture recognition using wireless signals in these six scenar-
ios. We then evaluate WiSee’s performance in a whole-home
scenario. Finally, we demonstrate WiSee’s ability to work in
the presence of other humans.

4.1 Feasibility of Wireless Gesture Detection

We start by evaluating the feasibility of gesture detection
using wireless signals in various scenarios.

Experiments: We run experiments in the six scenarios de-
picted in Fig. 8. We pick the office building to run these ex-
periments since it has more rooms and also allows us to eval-
uate the system at larger distances than in our two-bedroom
apartment. To evaluate how well WiSee can detect the pres-
ence of a gesture, we compute the Doppler SNR from the
frequency-time Doppler profile. Specifically, Doppler SNR is
the ratio between the average energy in the non-DC frequen-
cies in the profile, with and without the gesture. We ask the
user to move her hand towards the receiver, i.e., the first
gesture in Fig. 1. The user performs the gesture in the gen-
eral direction of the receiver independent of its location. Our
intuition behind this choice is that the user would naturally

gesture in the direction of the device she wants to control.
We compute the average Doppler SNR at each location by
having each user repeat the gesture ten times.

Results: Figs. 9(a)-(f) plot the average Doppler SNR as a
function of distance, for the six scenarios. The plots show
the results for different number of antennas at the receiver.
They show the following:

(a) Versus distance: In scenarios (a), (b), (d), and (e),
as the distance between the user and the receiver increases,
the average Doppler SNR reduces. This is expected because
the strength of the signal reflections from the human body
reduces with distance. However, the received Doppler SNR
is still about 3 dB at 12 feet, which is sufficient to identify
gestures. In scenarios (c) and (f), however, the Doppler SNR
does not significantly reduce with the distance from the re-
ceiver. This is because in both these scenarios, as the user
moves away from the receiver, she gets closer to the trans-
mitter. Thus, while the human reflections get weaker as the
user moves away from the receiver; since the user moves
closer to the transmitter, the transmitted signals arrive at
the user with a higher power, thus, increasing the energy in
the reflected signals. As a result, the Doppler SNR is as high
as 15 dB at distances of about 25 feet.

(b) Versus number of antennas: Across all the scenar-
ios, using more antennas at the WiSee receiver increases the
Doppler SNR. This is expected because additional antennas
provide diversity gains that are particularly helpful in the
low SNR regime. Further the gains in the Doppler SNR are
higher at large distances, and through-the-* scenarios—the
gains are as high as 10 dB in some locations. Also note that
in scenarios (d) and (f), the Doppler SNR at a single-antenna
receiver is as low as 1 dB across many positions; such low
SNRs are not sufficient to classify gestures. Additional an-
tennas significantly increase the Doppler SNR, enabling ges-
ture detection in these scenarios. As described in §3.4, this
is because of the wireless multi-path effects. In line-of-sight
scenarios there is a strong direct path between the human
body and the WiSee receiver or the transmitter. However,
the through-the-* scenarios experience significant multi-path
that effectively adds additional interference at the receiver.
With more antennas at the receiver, the algorithm in §3.2
can reduce the multi-path interference and hence can signif-
icantly improve the Doppler SNR. We note that across all
the scenarios, using 3-4 antennas at the receiver is sufficient
to achieve most of the MIMO benefits.

Summary: The key takeaways from the above results are:
First, using 3-4 antennas at the WiSee receiver is sufficient
to achieve gesture detection in all the above scenarios. Sec-
ond, gesture detection is feasible as long as the user is in
the “range” of the receiver. This range can, however, be in-
creased by spatially separating the transmitter and the re-
ceiver. Another option that we explore in the next section,
is to leverage multiple transmitters (e.g., mobile phone in
the living room, and laptop in the kitchen) to increase this
range.

4.2 Gesture Recognition in Whole-Home Sce-

nario

Next, we evaluate WiSee in a whole-home scenario.

Experiments: We run experiments in the two-bedroom apart-
ment shown in Fig. 7. We use a 4-antenna WiSee receiver
to compute the frequency-time Doppler profile using the al-
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(d) Through-the-Wall
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(e) Through-the-Corridor
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(f) Through-the-Room

Figure 9—Doppler SNR versus distance from the receiver. The plots show the Doppler SNR in various scenarios as
a function of both distance and the number of receiver antennas.

gorithm described in §3.2. We then map the profile to the
gestures using our pattern-mapping algorithm. We use two
single-antenna transmitters, as shown in Fig. 7, to maximize
the range of our system. The transmitter and receiver use
omni-directional antennas in our experiments. Since it is dif-
ficult to implement carrier sense on software radios, the two
transmitters time-share the medium every 10 ms. The re-
ceiver and the two transmitters are all placed in the living
room, with all the doors closed. We note that performing
gesture recognition with the doors closed is more challeng-
ing since the signal has to traverse through the doors and
walls and hence experiences significant attenuation. We pick
ten locations (marked in the layout) spanning all the rooms
in the apartment. These locations include line-of-sight, non-
line-of-sight, and through-the-wall settings. In each loca-
tion,the users perform the nine gestures shown in Fig. 1 in
the direction of the receiver, at a speed that was not pre-
determined. Before each experiment, the users were shown
how to perform each gesture. The users were also able to
check the gesture sketches (Fig. 1) during the experiment.
Each gesture is performed a total of 100 times across all the
locations.

Results: Fig. 10 plots the confusion matrix for the ten ges-
tures across all the locations. Each row denotes the actual
gesture performed by the user and each column the gestures
it was classified into. The last column counts the fraction
of gestures that were not detected at the receiver. Each el-
ement in the matrix corresponds to the fraction of gestures
in the row that were classified as the gesture in the column.
The table shows the following:

• The average accuracy is 94% with a standard deviation of
4.6% when classifying between our nine gestures. This is
in comparison to a random guess, which has an accuracy
of 11.1% for nine gestures. This shows that one can extract
rich information about gestures from wireless signals. We
note that despite wireless signals typically being noisy,
since Doppler shifts are detected over the duration that is
of the order of a second, WiSee achieves the above high

accuracy by averaging across time. Further, the multiple
antennas also provide spatial diversity that also increases
the accuracy.

• Only 2% of all the gestures (18 out of 900) were not de-
tected at the receiver. Further investigation revealed that
these mis-detections occurred when the user was in the
kitchen and one of the bedrooms. In these locations, the
reflected signals are weak and hence the Doppler SNR for
these specific gestures was close to 0 dB.

We note that when only tx1 was used to perform gesture
recognition, the accuracy was greater than 90% only in six of
the ten considered locations. This shows that each transmit-
ter provides a limited range for gesture recognition. Adding
more transmitters increases this effective range. We, how-
ever, note that the two-bedroom apartment scenario only
required two transmitters placed in the living room to suc-
cessfully classify gestures across all the locations.

4.3 Gestures in the Presence of Other Humans

Finally, we evaluate WiSee in the presence of other hu-
mans. We first measure the false detection rate in the ab-
sence of the target human. Then, we compute the accuracy
of gesture recognition for the target human, in the presence
of other humans. Finally, we stress test WiSee to see where
it fails.

False detection rate in the presence of other humans: As de-
scribed in §3.3, WiSee detects the target human by using a
repetitive gesture as a preamble. The repetitive gesture pro-
vides a protection against confusing other humans for the
target user. We compute the average number of false detec-
tion events, i.e., when the WiSee receiver detects the target
user (repetitive gesture), in her absence. To do this, we place
our WiSee receiver and transmitter in the middle of an of-
fice room (with dimensions 32 feet by 30 feet) occupied by
12 people, over a 24-hour period. The receiver looks for a
repetitive gesture where the user moves her hand towards
and away from the receiver; thus, each repetition results in
a positive Doppler shift followed by a negative Doppler shift.
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Figure 10—Confusion matrix for gestures in the
home scenario: The figure shows that the average de-
tection and classification accuracy is 94% across the nine
gestures. In contrast, random guesses have an accuracy of
11.1%. This shows that WiSee can extract rich information
about gestures from wireless signals.

The occupants move about and have meetings and lunches
in the office as usual. We believe that, given the higher den-
sity of people, the office room is a worse scenario compared
to our two-bedroom apartment. We note that there are other
scenarios in which WiSee can be evaluated, which are, how-
ever, not in the scope of this paper.

Fig. 11 plots the number of false detection events per hour
as a function of time. The figure shows results for differ-
ent number of repetitions in the preamble. The plot shows
that when the receiver uses a preamble with only one rep-
etition (i.e., perform the gesture once), the number of false
events is, on the average, 15.62 per hour. While this is low,
it is expected because typical human gestures do not fre-
quently result in a positive Doppler shift followed by a neg-
ative Doppler shift. For example, in our experiments, walk-
ing caused a continuous monotone Doppler shift that was
not confused with alternating positive and negative Doppler
shifts. Also, as the number of repetitions in the preamble in-
creases, the false detection rate significantly reduces. Specif-
ically, with three repetitions, the average false detection rate
reduces to 0.13 events per hour; with more than four rep-
etitions, the false detection rate is zero. This is expected
because it is unlikely that typical human motion would pro-
duce a repetitive pattern of positive and negative Doppler
shifts. Further, since the WiSee receiver requires repetitive
positive and negative Doppler shifts to occur at a particu-
lar range of speeds (0.25 m/s to 4 m/s), it is unlikely that
even typical environmental and mechanical variations would
produce them.

Classifying the target human gestures in the presence of other
humans: As described in §3.3, WiSee computes the MIMO
channel for the target user that minimizes the interference
from the other humans. We would like to evaluate the use of
MIMO in classifying a target user’s gestures, in the presence
of other moving humans. We run experiments in a 13 feet by
19 feet room with our WiSee receiver and transmitter. We
have the target user perform the two gestures in Fig. 1(a)
and Fig. 1(b). Our experiments have up to four interfering
users in random locations in the room. The users were asked
to perform arbitrary gestures using their arms.
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Figure 12—WiSee in the presence of other interfer-
ing users: The figure plots the detection and classification
accuracy of the target user in the presence of other users
in a 13 × 19 sq. feet room. The plots show that, given a
fixed number of antennas, as the number of interfering users
increases, the accuracy decreases. However, with three in-
terfering users, the accuracy is still as high as 90% with a
five-antenna receiver.

Fig. 12 plots the average recognition accuracy of the tar-
get user’s gestures as a function of the number of interfering
users. The figure shows results for different number of anten-
nas at the WiSee receiver. The plots show that using a five-
antenna receiver, the accuracy is as high as 90% with three
interfering users in the room. Further, using additional an-
tennas significantly improves this accuracy in the presence
of multiple interfering users. We note however, that for a
fixed number of transmitters and antennas at the receiver,
the classification accuracy degrades with the number of users
(e.g., a conference room setting or a party scenario). For ex-
ample, in our experiments, the accuracy is less than 60%
with four interfering users. However, since typical home sce-
narios do not have a large number of users in a room, WiSee
can enable a significant set of interaction applications for
always-available computing embedded in the environment.

Stress-testing WiSee: Since WiSee leverages MIMO to can-
cel the signal from the interfering human, it suffers from
the near-far problem that is typical to interference cancella-
tion systems. Specifically, reflections from an interfering user
closer to the receiver, can have a much higher power than
that of the target user. To evaluate WiSee’s classification
accuracy in this scenario, we run the following experiment:
We fix the location of the target user six feet away from the
WiSee receiver. We then change the interfering user’s loca-
tion between three feet and ten feet from the receiver. The
target user performs the two gestures shown in Fig. 1(a) and
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Figure 13—Stress testing WiSee in a near-far sce-
nario: The figure plots the Doppler energy of a target user
in the presence of another interfering user at various dis-
tances. The target user is fixed 6 feet away from the receiver.
The plot shows that adding antennas at the receiver helps
address the near-far problem.

Fig. 1(b). In each experiment, the interfering user adversar-
ially performs the opposite gesture to the one performed by
the target user. The WiSee receiver computes the MIMO
channel for the target user using her preamble.

Fig. 13 plots the target user’s Doppler SNR at the WiSee
receiver as a function of the distance between the interfering
user and the receiver. The figure shows multiple plots corre-
sponding to different number of antennas at the receiver. The
plots show that, smaller the distance between the interfering
user and the receiver, lower the Doppler SNR. Specifically,
the Doppler SNR is as low as -10 dB when the interfering
user is about 3.4 feet from the receiver. However, the figure
also shows that adding antennas at the receiver significantly
improves the Doppler SNR. Specifically, with four-antennas,
the Doppler SNR increases from -10 dB to 4.7 dB; which is
sufficient to classify gestures. Thus, we conclude that adding
additional receive antennas can help mitigate the near-far
problem.

5. Conclusion

In this paper, we take the first step towards transforming
Wi-Fi into a gesture-recognition sensor. We present WiSee, a
novel gesture recognition system that leverages wireless sig-
nals to enable whole-home sensing and recognition of human
gestures. Since wireless signals do not require line-of-sight
and can traverse through walls, WiSee can enable whole-
home gesture recognition using few signal sources. Our re-
sults in a 2-bedroom apartment show that WiSee can extract
a rich set of gesture information from wireless signals and en-
able whole-home gesture recognition using only two wireless
sources placed in the living room.
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